$$ f_{i,j}(t)=-\frac{Gm_{i}m_{j}}{||r_{i}(t)-r_{j}(t)||^{3}}(r_{i}(t)-r_{j}(t)) $$
$$ G=6.673\times10^{-11} \quad \frac{m}{(kg\cdot s^{2})} $$
$$ F_{i}(t)=\sum_{j=0, j\neq i}^{n-1}f_{i,j}(t) $$
$$ F_{i}(t)=-Gm_{i}\sum_{j=0, j\neq i}^{n-1}\frac{m_{j}}{||r_{i}(t)-r_{j}(t)||^{3}}(r_{i}(t)-r_{j}(t)) $$
$$ F_{i}(t)=m_{i}\ddot{r}_{i}(t) \quad za \quad i=0,1,...,n-1 $$
$$ \ddot{r}_{i}(t)= -G\sum_{j=0, j\neq i}^{n-1}\frac{m_{j}}{||r_{i}(t)-r_{j}(t)||^{3}}(r_{i}(t)-r_{j}(t)) $$
$$ \begin{bmatrix}0 & f_{0,1}& f_{0,2}& ...& f_{0,n-1} \\-f_{0,1} & 0 & f_{1,2} &...&f_{1, n-1} \\... & ... & ... &.... &.... \\-f_{0,n-1} & -f_{1, n-1} & -f_{2,n-1} &.... &0 \end{bmatrix} $$
$$ a_{i}(t)= \ddot{r}_{i}(t)=\frac{F_{i}(t)}{m_{i}} $$
$$ \dot{y}(t)=f(t,y), \quad y(0)=y_{0}, \quad t>0 $$
$$ \dot{r}_{i}(t)=v_{i}, \\ \dot{v}_{i}(t)=\frac{F_{i}(t)}{m_{i}} \quad i=0,1,2,...,n-1, \\r_{i}(0)=r_{i,0}, \quad v_{i}(0)=v_{i,0}, \quad i=0,1,2,...,n-1 $$
$$ F_{i}(t_{k-1}), \quad v_{i}(t_{k}), \quad r_{i}(t_{k}) $$
$$ Za\quad v_{i}(t_{k})\quad treba \\ v_{i}(t_{k-1}), \quad F_{i}(t_{k-1}), \quad r_{i}(t_{k-1}), \quad v_{j}(t_{k-1}) \\ Za\quad v_{i}(t_{k})\quad treba \\ r_{i}(t_{k-1}), \quad v_{i}(t_{k-1}) $$
$$ F_{3}=f_{0,3}-f_{1,3}-f_{2,3} $$