$$ 1. \quad ||x||_{2}=\sqrt{\sum|x_{i}|^{2}}$$ $$ 2. \quad ||x||_{1}=\sqrt{\sum|x_{i}|} $$ $$ 3. \quad ||x||_{∞}=max(|x_{i}|) $$
$$ 1. \quad \left(\begin{array}{c}c \quad s\\ -s \quad c\end{array}\right)\left(\begin{array}{c}a\\ b\end{array}\right)=\left(\begin{array}{c}\sqrt{|a|^{2}+|b|^{2}}\\ 0\end{array}\right) $$ $$ 2. \quad x_{i}=cx_{i}+sy_{i} \\ \quad y_{i}=-sx_{i}+cy_{i} $$
$$ 1. \quad \left(\begin{array}{c}x_{1}\\ 0\end{array}\right)=H\left(\begin{array}{c}x_{1}\sqrt{d_{1}}\\ y_{1}\sqrt{d_{2}}\end{array}\right) $$ $$ 2. \quad \left(\begin{array}{c}x_{i}\\ y_{i}\end{array}\right)=H\left(\begin{array}{c}x_{i}\\ y_{i}\end{array}\right) $$
$$ 1. \quad C=\alpha AA^{T}+\beta C $$ $$ 2. \quad C=\alpha AB^{T}+\overline{\alpha}BA^{T}+\beta C $$